Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
k=16
Step-by-step explanation:
So the tangent line is
[tex]4x + k[/tex]
and it tangent to function
[tex] {x}^{2} + 8x + 20[/tex]
Since the slope of the tangent line is 4, this means the derivative of f(x) is 4 but first let find the derivative of
[tex] {x}^{2} + 8x + 20[/tex]
Use the Sum Rule,
[tex] \frac{d}{dx} {x}^{2} + \frac{d}{dx} 8x + \frac{d}{dx} 20[/tex]
Use the Power Rule and we get
[tex]2x + 8[/tex]
Set this equal to 4
[tex]2x + 8 = 4[/tex]
[tex]2x = - 4[/tex]
[tex]x = - 2[/tex]
So at x=-2, the slope of the tangent line is 4.
Plug -2 in the orginal function, and we get
[tex] { - 2}^{2} + 8( - 2) + 20 = 8[/tex]
So the point must pass through -2,8 with a slope of 4.
[tex]y - 8 = 4(x + 2)[/tex]
[tex]y - 8 = 4x + 8[/tex]
[tex]y = 4x + 16[/tex]
So the value of k is 16.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.