Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
288, 203.65, and 347.65
Step-by-step explanation:
There's a mess of equations that I won't bother with - find it on G0ogle to verify my answer.
However, for the first one...
The bases' side lengths are 12 each, so 144... then multiply it by 6, so 864... then divide the result by 3, so 288.
Answer:
A) 288 units³
B) 144√2 ≈ 203.65 units²
C) 144(1+√2) ≈ 347.65 units²
Step-by-step explanation:
A)
The volume of a pyramid is given by the formula ...
V = 1/3Bh
where B is the area of the base, and h is the height. The base is a square with side length 12, so its area is
A = s² = 12² = 144
Then the volume is ...
V = 1/3(144)(6) = 288 . . . . cubic units
__
B)
To find the area of one of the triangular faces of the pyramid, we must first find the slant height. The slant height is the hypotenuse of a right triangle with legs equal to the pyramid height and half the base side length. Those are both 6 units, so the slant height is the hypotenuse of an isosceles right triangle with legs that are 6:
h = √(6² +6²) = 6√2
The area of the four faces is 4 times the area of one triangular face. So, the lateral area is ...
LA = 4(1/2)(12)(6√2) = 144√2 ≈ 203.65 . . . . square units
__
C)
The total surface area of the pyramid is the sum of the lateral area and the base area:
SA = 144√2 +144 = 144(1+√2) ≈ 347.65 . . . . square units
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.