Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The biggest remainder obtained by dividing 2015 by either 1, 2, 3,
4,...,1000 is the option;
(C) 671
How can the biggest remainder be found?
The given number Maria divides is 2015
The divisors = 1, 2, 3, 4,..., 1000
Required:
The biggest remainder Maria noted down.
Solution:
From remainder theorem, we have;
p(x) = (x - a) × q·(x) + r(x)
Where;
r(x) = The remainder
q(x) = The quotient
(x - a) = The devisor
Which gives;
[tex]\dfrac{r(x) }{(x - a)} = \dfrac{p(x) }{(x - a)} -\dfrac{(x - a) \times q(x) }{(x - a)} = \mathbf{ \dfrac{p(x) }{(x - a)} -q(x)}[/tex]
Therefore;
[tex]r(x) = \mathbf{\left(\dfrac{p(x) }{(x - a)} -q(x) \right) \times (x - a)}[/tex]
The remainder is largest when both [tex]\left(\dfrac{p(x) }{(x - a)} -q(x) \right)[/tex] and (x - a) are large
[tex]\left(\dfrac{p(x) }{(x - a)} -q(x) \right)[/tex] is largest when the quotient changes to the next lower
digit and the divisor is not a factor.
By using MS Excel, we have, at 672, the remainder is found as follows;
[tex]r(x) = \left(\dfrac{2015}{672} -2\right) \times (672) = 671[/tex]
At 672, [tex]\left(\dfrac{p(x) }{(x - a)} -q(x) \right)[/tex] ≈ 0.999, which when multiplied by 672, gives
the biggest remainder of 671, which is the biggest remainder.
- The biggest remainder obtained by dividing 2015 by either 1, 2, 3, 4,...,1000 is (C) 671
Learn more about the remainder theorem here:
https://brainly.com/question/3283462
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.