Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
acceleration: 5.48 m/s²
time taken: 9.3 seconds
Given:
- mass: 1200 kg
- force: 6572 N
- initial velocity: 15 m/s
- final velocity: 66 m/s
[tex]\boxed{\sf acceleration = \dfrac{Force}{mass}}[/tex] [tex]\boxed{\sf time \ taken = \dfrac{final \ velocity - initial \ velocity}{acceleration} }[/tex]
using the formula's:
answer 1:
[tex]\sf acceleration = \dfrac{F}{m}[/tex]
[tex]\sf acceleration = \dfrac{6572 }{1200 }[/tex]
[tex]\sf acceleration = 5.4766... \ m/s^2[/tex]
[tex]\sf acceleration = 5.48 \ m/s^2[/tex] // rounded to nearest hundredth //
answer 2:
[tex]\sf time \ taken = \dfrac{\Delta v}{a}[/tex]
[tex]\sf time \ taken = \dfrac{66 - 15}{5.48}[/tex]
[tex]\sf time \ taken = 9.3122 \ seconds[/tex]
[tex]\sf time \ taken = 9.3 \ seconds[/tex] // rounded it to nearest tenth //
Answer:
[tex]\large\boxed{\sf Time =9.30\ s }[/tex]
[tex]\large\boxed{\sf Accl^n =5.47\ m/s^2 }[/tex]
Explanation:
Here it is given that a car of mass 1200kg has an initial velocity of 15m/s achieves a velocity of 66m/s . A force of 6572N was applied in order to increase the velocity and we need to find the time taken in doing so .
From Newton's Second Law of Motion ,
- The rate of change of momentum is directly proportional to the applied force in the direction of the force . Mathematically ,
[tex]\sf\qquad\longrightarrow Force = \triangle p\\\\ [/tex]
As momentum (p) = mass × velocity ,
[tex]\\\sf\qquad\longrightarrow Force = \dfrac{m(v-u)}{t} \\\\ [/tex]
Here ,
- u = 15m/s
- v = 66m/s
- Force = 6572N
• On substituting the respective values ,
[tex]\sf\qquad\longrightarrow 6572N = \dfrac{1200kg ( 66- 15 )m/s }{t}\\\\ [/tex]
[tex]\sf\qquad\longrightarrow 6572N = 1200kg \times \dfrac{51}{t} \\\\ [/tex]
[tex]\sf\qquad\longrightarrow t = \dfrac{1200×51}{6572N } \\\\ [/tex]
[tex]\sf\qquad\longrightarrow t =\dfrac{61200}{6572}s \\\\ [/tex]
[tex]\sf\qquad\longrightarrow \pink{\frak{ Time = 9.30\ s }} [/tex]
• For finding acceleration ,
[tex]\sf\qquad\longrightarrow Force = mass * acceleration \\\\ [/tex]
[tex]\sf\qquad\longrightarrow accl^n =\dfrac{Force}{mass} \\\\ [/tex]
[tex]\sf\qquad\longrightarrow accl^n =\dfrac{6572N }{1200kg} \\\\ [/tex]
[tex]\sf\qquad\longrightarrow \pink{\frak{ acceleration= 5.47\ m/s^2}} \\\\ [/tex]
[tex]\rule{200}4[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.