Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
We are provided with ;
[tex]{:\implies \quad \bf f(x)=\displaystyle \begin{cases}\bf \dfrac{k\cos (x)}{\pi -2x}\:\:,\:\: x\neq \dfrac{\pi}{2}\\ \\ \bf 3\:\:,\:\: x=\dfrac{\pi}{2}\end{cases}}[/tex]
Also we are given with ;
[tex]{:\implies \quad \displaystyle \bf \lim_{x\to \footnotesize \dfrac{\pi}{2}}f(x)=f\left(\dfrac{\pi}{2}\right)}[/tex]
At first , let's define the function at x = π/2 . Now , as given that f(x) = 3 , x = π/2. Implies , f(π/2) = 3
Now , we have ;
[tex]{:\implies \quad \displaystyle \sf \lim_{x\to \footnotesize \dfrac{\pi}{2}}f(x)=3}[/tex]
Now , As in RHS , x is approaching π/2 , means that x is in neighbourhood of π/2 , x is coming towards π/2 , but it's not π/2 , implies f(x) for the limit in LHS is defined for x ≠ π/2 or we don't have to take value of x as π/2 , means x ≠ π/2 in that case , means we have to take f(x) = {kcos(x)}/π-2x , x ≠ π/2 for the limit given in LHS ,
[tex]{:\implies \quad \displaystyle \sf \lim_{x\to \footnotesize \dfrac{\pi}{2}}\dfrac{k\cos (x)}{\pi -2x}=3}[/tex]
Now , As k is constant , so take it out of the limit
[tex]{:\implies \quad \displaystyle \sf k \lim_{x\to \footnotesize \dfrac{\pi}{2}}\dfrac{\cos (x)}{\pi -2x}=3}[/tex]
For , further evaluation of the limit , we will use substitution , putting ;
[tex]{:\implies \quad \sf x=\dfrac{\pi}{2}-y\:\: , as\:\: x\to \dfrac{\pi}{2}\:\:,\: So\:\: y\to0}[/tex]
Putting ;
[tex]{:\implies \quad \displaystyle \sf k \lim_{y\to0}\dfrac{\cos \left(\dfrac{\pi}{2}-y\right)}{\pi -2\left(\dfrac{\pi}{2}-y\right)}=3}[/tex]
Now , we knows that
- [tex]{\boxed{\bf{\cos \left(\dfrac{\pi}{2}-\theta \right)=\sin (\theta)}}}[/tex]
Using this , we have :
[tex]{:\implies \quad \displaystyle \sf k \lim_{y\to0}\dfrac{\sin (y)}{\pi -\bigg\{2\left(\dfrac{\pi}{2}\right)-2y\bigg\}}=3}[/tex]
[tex]{:\implies \quad \displaystyle \sf k \lim_{y\to0}\dfrac{\sin (y)}{\pi -(\pi -2y)}=3}[/tex]
[tex]{:\implies \quad \displaystyle \sf k \lim_{y\to0}\dfrac{\sin (y)}{\cancel{\pi}-\cancel{\pi} +2y}=3}[/tex]
[tex]{:\implies \quad \displaystyle \sf k \lim_{y\to0}\dfrac{\sin (y)}{2y}=3}[/tex]
Take ½ out of the limit as it's too constant ;
[tex]{:\implies \quad \displaystyle \sf \dfrac{k}{2} \lim_{y\to0}\dfrac{\sin (y)}{y}=3}[/tex]
Now , we also knows that ;
- [tex]{\boxed{\displaystyle \bf \lim_{h\to0}\dfrac{\sin (h)}{h}=1}}[/tex]
Using this we have ;
[tex]{:\implies \quad \sf \dfrac{k}{2}=3}[/tex]
[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{k=6}}}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.