Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Horizontal and vertical components of the ball's velocity
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
Maximum height reached by the ball
[tex]H = \frac{v^2 sin^2(\theta)}{2g} \\\\H = \frac{(39.7)^2 \times (sin17.8)^2}{2(9.8)} \\\\H = 7.51 \ m[/tex]
Maximum height above ground = 7.51 + 1.09 = 8.6 m
Distance off course after 2 second
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)
[tex]V = \sqrt{(-7.46)^2 + (37.8)^2} \\\\V = 38.53 \ m/s[/tex]
Resultant speed of the ball and crosswind
[tex]V = \sqrt{38.52^2 + 4^2} \\\\V = 38.72 \ m/s[/tex]
Distance off course the ball would be carried
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: https://brainly.com/question/11049671
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.