Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
minimum, coordinates of vertex: (-3,-11)
explanation:
[tex]\sf y =x^2 +6x-2[/tex]
x coordinates on vertex:
solving steps:
- [tex]\sf \dfrac{-b}{2a}[/tex]
- [tex]\sf \dfrac{-6}{2(1)}[/tex]
- [tex]\sf -3[/tex]
Find y-coordinate on vertex:
[tex]\sf y =x^2 +6x-2[/tex]
[tex]\sf y =(-3)^2 +6(-3)-2[/tex]
[tex]\sf y =-11[/tex]
[tex]\mathrm{If}\:a < 0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}[/tex]
[tex]\mathrm{If}\:a > 0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}[/tex]
coordinates: (-3,-11) thus minimum
Answer:
vertex = (-3, -11)
minimum
Step-by-step explanation:
The vertex of a parabola is its turning point (stationary point).
Therefore, the x-coordinate of the vertex can be determined by differentiating the function, setting it zero and solving for x:
[tex]\dfrac{dy}{dx}=2x+6[/tex]
[tex]\dfrac{dy}{dx}=0\implies 2x+6=0 \implies x=-3[/tex]
Substitute found value for x into the original function to find the y-coordinate:
[tex]\implies (-3)^2+6(-3)-2=-11[/tex]
Therefore, the vertex is (-3, -11)
As the leading term of the quadratic function ([tex]x^2[/tex]) is positive, the parabola will open upwards, so the vertex is its minimum point.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.