At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
26
Step-by-step explanation:
We can work backwards using the z-score formula to find the mean. The problem gives us the values for z, x and σ. So, let's substitute these numbers back into the formula:
z−4−16−2626=x−μσ=10−μ4=10−μ=−μ=μ
We can think of this conceptually as well. We know that the z-score is −4, which tells us that x=10 is four standard deviations to the left of the mean, and each standard deviation is 4. So four standard deviations is (−4)(4)=−16 points. So, now we know that 10 is 16 units to the left of the mean. (In other words, the mean is 16 units to the right of x=10.) So the mean is 10+16=26.
Answer:
[tex]26[/tex] points.
Step-by-step explanation:
Let [tex]X[/tex] denote a normal random variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex]. (That is: [tex]X \sim {\rm N}(\mu,\, \sigma)[/tex].) By definition, the [tex]z[/tex]-score of an observation with value [tex]X = x[/tex] would be:
[tex]\begin{aligned} z&= \frac{x - \mu}{\sigma}\end{aligned}[/tex].
In this question, the value of [tex]\sigma[/tex] is given. Also given are the value of the observation [tex]x[/tex] and the corresponding [tex]z[/tex]-score, [tex]z\![/tex]. Rearrange the [tex]\! z[/tex]-score definition [tex]z = (x - \mu) / \sigma[/tex] to find an expression for [tex]\mu[/tex]:
[tex]\begin{aligned} x - \mu = \sigma\, z\end{aligned}[/tex].
[tex]-\mu = (-x) + \sigma\, z[/tex].
[tex]\begin{aligned}\mu = x - \sigma\, z\end{aligned}[/tex].
Substitute in the value of [tex]x[/tex], [tex]\sigma[/tex], and [tex]z[/tex] to find the value of [tex]\mu[/tex], the mean of this normal random variable:
[tex]\begin{aligned}\mu &= x - \sigma\, z \\ &= 10 - (-16) \\ &= 26\end{aligned}[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.