Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
[tex]y = \frac 14x^2[/tex] is less steep than the parent quadratic equation, while [tex]y = 2x^2[/tex] is steeper than the parent quadratic equation
How to determine the equations
The parent equation of a quadratic equation is represented as:
[tex]y = x^2[/tex]
For a function to be steeper or less steep than the parent function must be stretched or compressed by a factor k
So, we have:
[tex]y = (kx)^2[/tex]
If k is greater than 1, then the function would be steeper; else, the function would be less steep.
Assume k = 2, we have:
[tex]y = (2x)^2[/tex]
[tex]y = 2x^2[/tex]
Assume k = 1/2, we have:
[tex]y = (\frac 12x)^2[/tex]
[tex]y = \frac 14x^2[/tex]
Hence, [tex]y = \frac 14x^2[/tex] is less steep than the parent quadratic equation, while [tex]y = 2x^2[/tex] is steeper than the parent quadratic equation
Read more about quadratic equations at:
https://brainly.com/question/11631534
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.