Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
I suppose you mean
[tex]\displaystyle \int \frac{\sqrt{9+x}}{9-x} \, dx[/tex]
Substitute y = √(9 + x). Solving for x gives x = y² - 9, so that 9 - x = 18 - y², and we have differential dx = 2y dy. Replacing everything in the integral gives
[tex]\displaystyle \int \frac{2y^2}{18 - y^2} \, dy[/tex]
Simplify the integrand by dividing:
[tex]\dfrac{2y^2}{18 - y^2} = -2 + \dfrac{36}{18 - y^2}[/tex]
[tex]\implies \displaystyle \int \left(\frac{36}{18-y^2} - 2\right) \, dy[/tex]
For the first term of this new integral, we have the partial fraction expansion
[tex]\dfrac1{18 - y^2} = \dfrac1{\sqrt{72}} \left(\dfrac1{\sqrt{18}-y} + \dfrac1{\sqrt{18}+y}\right)[/tex]
[tex]\implies \displaystyle \frac{36}{\sqrt{72}} \int \left(\frac1{\sqrt{18}-y} + \frac1{\sqrt{18}+y}\right) \, dy - 2 \int dy[/tex]
The rest is trivial:
[tex]\displaystyle \sqrt{18} \int \left(\frac1{\sqrt{18}-y} + \frac1{\sqrt{18}+y}\right) \, dy - 2 \int dy[/tex]
[tex]= \displaystyle \sqrt{18} \left(\ln\left|\sqrt{18}+y\right| - \ln\left|\sqrt{18}-y\right|\right) - 2y + C[/tex]
[tex]= \displaystyle \sqrt{18} \ln\left|\frac{\sqrt{18}+y}{\sqrt{18}-y}\right| - 2y + C[/tex]
[tex]= \boxed{\displaystyle \sqrt{18} \ln\left|\frac{\sqrt{18}+\sqrt{9+x}}{\sqrt{18}-\sqrt{9+x}}\right| - 2\sqrt{9+x} + C}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.