Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The volume of the rectangular package is the amount of space in the package
- The inequality that represents allowable dimensions is 4x + y ≤ P
- Three possible dimensions are: 2 by 100,1 by 104 and 1.5 by 102
The inequality that represents allowable dimensions
Let the dimension of the package be x and y.
So, the perimeter (P) and the volume (V) are
P = 4x + y
V = x²y
The maximum perimeter of the box is P.
So, the inequality is:
4x + y ≤ P
The three different dimensions
Recall that:
P = 4x + y
The perimeter becomes
4x + y = 108
Make y the subject
y = 108 - 4x
Substitute y = 108 - 4x in V = x²y
V = x²(108 - 4x)
Expand
V = 108x² - 432x
Differentiate
V' = 216x - 432
Set to 0
216x - 432 = 0
Add 432 to both sides
216x = 432
Divide by 216
x = 2
Substitute x = 2 in y = 108 - 4x
y = 108 - 4 * 2
Evaluate
y = 100
So, the inequalities are:
x ≤ 2 and y ≤ 100
Using the above inequality, three possible dimensions are: 2 by 100,1 by 104 and 1.5 by 102
Read more about maximum volumes at:
https://brainly.com/question/10373132
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.