At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
We need a work of 294210 watts to pump the water over the top. [tex]\blacksquare[/tex]
Work needed to pump all the water over the top
Since the cross section area of the trough ([tex]A[/tex]), in square meters, varies with the height of the water ([tex]h[/tex]), in meters, and considering that pumping system extracts water at constant rate, then the work needed to pump all the water ([tex]W[/tex]), in joules, is:
[tex]W = \int\limits^{V_{max}}_0 {p} \, dV[/tex] (1)
Where:
- [tex]p[/tex] - Pressure of the infinitesimal volume, in pascals.
- [tex]V[/tex] - Volume, in cubic meters.
- [tex]V_{max}[/tex] - Maximum volume allowed by the trough, in cubic meters.
The infinitesimal volume is equivalent to the following expression:
[tex]dV = A\, dh[/tex] (2)
Since the area is directly proportional to the height of the water, we have the following expression:
[tex]A = \frac{A_{max}}{H_{max}}\cdot h[/tex] (3)
Where:
- [tex]A_{max}[/tex] - Area of the base of the trough, in square meters.
- [tex]H_{max}[/tex] - Maximum height of the water, in meters.
In addition, we know that pressure of the water is entirely hydrostatic:
[tex]p = \rho \cdot g \cdot h[/tex] (4)
Where:
- [tex]\rho[/tex] - Density of water, in kilograms per cubic meters.
- [tex]g[/tex] - Gravitational acceleration, in meters per square second.
By (2), (3) and (4) in (1):
[tex]W = \frac{\rho\cdot g\cdot W_{max}\cdot L_{max}}{H_{max}} \int\limits^{H_{max}}_{0} {h^{2}} \, dh[/tex] (5)
Where:
- [tex]W_{max}[/tex] - Width of the base of the triangle, in meters.
- [tex]L_{max}[/tex] - Length of the base of the triangle, in meters.
- [tex]H_{max}[/tex] - Maximum height of the triangle, in meters.
The resulting expression is:
[tex]W = \frac{\rho\cdot g\cdot W_{max}\cdot L_{max}\cdot H_{max}^{2}}{3}[/tex] (5b)
If we know that [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]W_{max} = 2\,m[/tex], [tex]L_{max} = 5\,m[/tex] and [tex]H_{max} = 3\,m[/tex], then the work needed to pump the water is:
[tex]W = \frac{(1000)\cdot (9.807)\cdot (2)\cdot (5)\cdot (3)^{2}}{3}[/tex]
[tex]W = 294210\,W[/tex]
We need a work of 294210 watts to pump the water over the top. [tex]\blacksquare[/tex]
To learn more on work, we kindly invite to check this verified question: https://brainly.com/question/17290830

We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.