Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Using the t-distribution, as we have the standard deviation for the sample, it is found that the 95% confidence interval for the number of units students in their college are enrolled in is (11.7, 12.7).
What is a t-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- t is the critical value.
- n is the sample size.
- s is the standard deviation for the sample.
The critical value, using a t-distribution calculator, for a two-tailed 95% confidence interval, with 49 - 1 = 48 df, is t = 2.0106.
Hence:
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 12.2 - 2.0106\frac{1.6}{\sqrt{49}} = 11.7[/tex]
[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 12.2 + 2.0106\frac{1.6}{\sqrt{49}} = 12.7[/tex]
The 95% confidence interval for the number of units students in their college are enrolled in is (11.7, 12.7).
More can be learned about the t-distribution at https://brainly.com/question/16162795
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.