Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
A series can be an arithmetic series or geometric series
The series is undefined
How to determine the number of terms?
The given parameters about the geometric series are:
a1 = -2 --- the first term
r=-2 --- the common ratio
Sn=22 --- the sum of n terms
The sum of n terms of a geometric series is represented as:
[tex]S_n = \frac{a(r^n - 1)}{(r-1)}[/tex]
Substitute known values
[tex]22 = \frac{-2((-2)^n -1)}{(-2-1)}[/tex]
This gives
[tex]22 = \frac{-2((-2)^n -1)}{(-3)}[/tex]
Divide both sides by -2
[tex]-11 = \frac{((-2)^n -1)}{(-3)}[/tex]
Multiply both sides by -3
[tex]33 = (-2)^n -1[/tex]
Add 1 to both sides
[tex](-2)^n = 34[/tex]
Take the natural logarithm of both sides
[tex]n\ln(-2) = \ln(34)[/tex]
Solve for n
[tex]n= \frac{\ln(34)}{\ln(-2) }[/tex]
The above number is a complex number.
Hence, the series is undefined
Read more about geometric series at:
https://brainly.com/question/12006112
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.