Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Given the value of the area, the width of the rectangle whose length is 2 units more than twice its width is 4 units
Option A) 4 units is the correct answer.
What is Rectangle?
A rectangle is simply a 2-dimensional shape which has opposite sides equal to each other and all four angles are right angles.
Area of a rectangle is expressed as;
A = l × w
Where l is length and w is width
Given the data in the question;
- Width of the rectangle = w units
- Length of the rectangle L = 2w + 2 units
- Area of the rectangle A = 40 units²
- Value of w = ?
We substitute our given values into the expression above.
A = l × w
40 = (2w + 2) × w
w( 2w + 2 ) = 40
2w² + 2w = 40
2w² + 2w - 40 = 0
divide through by 2
w² + w - 20 = 0
Using the quadratic formula;
x = (-b±√(b² - 4ac)) / (2a)
a = 1
b = 1
c = -20
w = (-1±√(1² - ( 4× 1 × -20 ))) / (2×1)
w = (-1±√(1 + 80)) / (2)
w = (-1±√(81)) / 2
w = (-1 ± 9) / 2
Hence
w = (-1 + 9) / 2 or (-1 - 9) / 2
w = 8/2 or -10/2
w = 4 or -5
But the width the rectangle cannot be a negative number.
Given the value of the area, the width of the rectangle whose length is 2 units more than twice its width is 4 units
Option A) 4 units is the correct answer.
Learn more about Area of rectangle here: https://brainly.com/question/20693059
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.