Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given the value of the area, the width of the rectangle whose length is 2 units more than twice its width is 4 units
Option A) 4 units is the correct answer.
What is Rectangle?
A rectangle is simply a 2-dimensional shape which has opposite sides equal to each other and all four angles are right angles.
Area of a rectangle is expressed as;
A = l × w
Where l is length and w is width
Given the data in the question;
- Width of the rectangle = w units
- Length of the rectangle L = 2w + 2 units
- Area of the rectangle A = 40 units²
- Value of w = ?
We substitute our given values into the expression above.
A = l × w
40 = (2w + 2) × w
w( 2w + 2 ) = 40
2w² + 2w = 40
2w² + 2w - 40 = 0
divide through by 2
w² + w - 20 = 0
Using the quadratic formula;
x = (-b±√(b² - 4ac)) / (2a)
a = 1
b = 1
c = -20
w = (-1±√(1² - ( 4× 1 × -20 ))) / (2×1)
w = (-1±√(1 + 80)) / (2)
w = (-1±√(81)) / 2
w = (-1 ± 9) / 2
Hence
w = (-1 + 9) / 2 or (-1 - 9) / 2
w = 8/2 or -10/2
w = 4 or -5
But the width the rectangle cannot be a negative number.
Given the value of the area, the width of the rectangle whose length is 2 units more than twice its width is 4 units
Option A) 4 units is the correct answer.
Learn more about Area of rectangle here: https://brainly.com/question/20693059
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.