Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
6/5
Step by step explanation:
Here we are provided with a equation which is ,
[tex]\longrightarrow 15x + 18y = 270 [/tex]
And we are interested in finding the slope of the line which is perpendicular to the given line. We may rewrite the equation as ,
[tex]\longrightarrow 18y = -15x +270\\ [/tex]
[tex]\longrightarrow y =\dfrac{-15x+270}{18}\\[/tex]
[tex]\longrightarrow y =\dfrac{-15}{18}x +\dfrac{270}{8}\\ [/tex]
[tex]\longrightarrow y =\dfrac{-5}{6}x +\dfrac{135}{4} [/tex]
Recall the slope intercept form of the line which is y = mx + c .On comparing to which we get ,
[tex]\longrightarrow m =\dfrac{-5}{6} [/tex]
Again , recall that product of slopes of two perpendicular lines is -1. So that ,
[tex]\longrightarrow m_{\perp} =-\bigg(\dfrac{1}{m}\bigg)[/tex]
Hence ,
[tex]\longrightarrow\underline{\underline{ m_{\perp}= \dfrac{6}{5}}}[/tex]
And we are done !
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.