At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using the t-distribution, as we have the standard deviation for the sample, it is found that the 98% confidence interval for the true mean age of Summer Olympians since the 1980 Olympics is (20.6, 24.8). It means that we are 98% sure that the true age of all Olympians is between these two values.
What is a t-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- t is the critical value.
- n is the sample size.
- s is the standard deviation for the sample.
In this problem, with the help of a t-distribution calculator, with a two-tailed significance level of 0.02 and 24 - 1 = 23 degrees of freedom, the parameters are:
[tex]\overline{x} = 22.7, s = 4.15, n = 24, t = 2.5[/tex]
Then, the interval is:
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 22.7 - 2.5\frac{4.15}{\sqrt{24}} = 20.6[/tex]
[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 22.7 + 2.5\frac{4.15}{\sqrt{24}} = 24.8[/tex]
The 98% confidence interval for the true mean age of Summer Olympians since the 1980 Olympics is (20.6, 24.8). It means that we are 98% sure that the true age of all Olympians is between these two values.
More can be learned about the t-distribution at https://brainly.com/question/16162795
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.