At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Presumably, the first limit is some finite number
[tex]\displaystyle \lim_{x\to\pi} \frac{f(x)}{x-\pi} = c[/tex]
Since x - π clearly approaches 0 as x approaches π, we must also have f(x) approaching 0,
[tex]\displaystyle \lim_{x\to\pi} f(x) = 0[/tex]
Recall the double angle identity,
sin(2t) = 2 sin(t) cos(t)
and rewrite the limit as
[tex]\displaystyle \lim_{x\to\pi} \frac{\sin(2 f(x))}{x - \pi} = \lim_{x\to\pi} \frac{2 \sin(f(x)) \cos(f(x))}{x - \pi} = 2 \lim_{x\to\pi} \frac{\sin(f(x))}{f(x)} \times \frac{f(x) \cos(f(x))}{x - \pi}[/tex]
Recall that
[tex]\displaystyle \lim_{x\to0}\frac{\sin(x)}x=1[/tex]
which means
[tex]\displaystyle \lim_{x\to\pi}\frac{\sin(f(x))}{f(x)} = \lim_{f(x)\to0}\frac{\sin(f(x))}{f(x)} = 1[/tex]
and by continuity,
[tex]\displaystyle \lim_{x\to\pi} \cos(f(x)) = \cos\left(\lim_{x\to\pi} f(x)\right) = \cos(0) = 1[/tex]
Then
[tex]\displaystyle 2 \lim_{x\to\pi} \frac{\sin(f(x))}{f(x)} \times \frac{f(x) \cos(f(x))}{x - \pi} \\\\ = 2 \left(\lim_{x\to\pi}\frac{\sin(f(x))}{f(x)}\right) \left(\lim_{x\to\pi} \frac{f(x)}{x-\pi}\right) \left(\lim_{x\to\pi}\cos(f(x))\right) \\\\ = 2 \times 1 \times c \times 1 = \boxed{2c}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.