Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
It looks like the inequality is
[tex]\bigg|x + 6 - |3x + 6|\bigg| + |x + 2| - x - 4 \le 0[/tex]
or equivalently,
[tex]\bigg|x + 6 - 3 |x + 2|\bigg| + |x + 2| - x - 4 \le 0[/tex]
Recall the definition of absolute value:
[tex]|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}[/tex]
By this definition, we have
[tex]|x + 2| = \begin{cases} x + 2 & \text{if } x + 2 \ge 0 \\ -(x + 2) & \text{if } x + 2 < 0 \end{cases} = \begin{cases} x + 2 & \text{if } x \ge -2 \\ -x - 2 & \text{if } x < -2 \end{cases}[/tex]
Suppose [tex]x < -2[/tex]. Then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |x + 6 - 3 (-x - 2)| + (-x - 2) - x - 4 \\\\ = |4x + 12| - 2x - 6[/tex]
By definition of absolute value,
[tex]|4x + 12| = 4 |x + 3| = \begin{cases} 4x + 12 & \text{if } x \ge -3 \\ -4x - 12 & \text{if } x < -3 \end{cases}[/tex]
so we further suppose that [tex]x < -3[/tex]. Then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |4x + 12| - 2x - 6 \\\\ = (-4x - 12) - 2x - 6 \\\\ = -6x - 18 \le 0 \\\\ \implies x \ge -3[/tex]
but this is a contradiction, so this case gives no solution.
If instead we have [tex]-3 \le x < -2[/tex], then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |4x + 12| - 2x - 6 \\\\ = (4x + 12) - 2x - 6 \\\\ = 2x + 6 \le 0 \\\\ \implies x \le -3[/tex]
and [tex]-3 \le x[/tex] and [tex]x \le -3[/tex] means that [tex]\boxed{x = -3}[/tex].
Now suppose [tex]x \ge -2[/tex]. Then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = |x + 6 - 3 (x + 2)| + (x + 2) - x - 4 \\\\ = |-2x| - 2 \\\\ = 2 |x| - 2[/tex]
If we further suppose that [tex]-2 \le x < 0[/tex], then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = 2 |x| - 2 \\\\ = -2x - 2 \le 0 \\\\ \implies x \ge -1[/tex]
Otherwise, if [tex]x \ge 0[/tex], then
[tex]\bigg| x + 6 - |3x + 6| \bigg| + |x + 2| - x - 4 \\\\ = 2 |x| - 2 \\\\ = 2x - 2 \le 0 \\\\ \implies x \le 1[/tex]
Taken together, this case gives the solution [tex]\boxed{-1 \le x \le 1}[/tex]
So, the overall solution to the inequality is the set
[tex]\boxed{\left\{ x \in \mathbb R : x = -3 \text{ or } -1 \le x \le -1 \right\}}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.