Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Three hundred high school seniors were surveyed about their intended college majors. The results are displayed in the Venn Diagram below: A Venn Diagram titled College Majors with two circles labeled Math and Science. In the math portion is 120. In the intersection is ??. In the Science portion is 50. The area outside the two circles is labeled 100. If a student is randomly selected from the group, what is the probability that they are majoring in both math and science? Round your answer to the nearest whole percent. 10% 17% 33% 40%.

Sagot :

The probability of selecting one student who is both from math and science is 1/10

There are the total number of student = 300

Out of which,the number of students who are only in Maths  = 120

The number of students who are only in Science  = 50 and  the students who are not from any subject = 100

What is the formula for the total students?

Total no of students=science student+math students +none

Therefore,the number of student who are from both math and science = Total student - Math student (only) - science student (only) - None

= 300 - 120 - 50 - 100

= 30

That is, there are 30 students who are both from science and math,

Thus, the probability of selecting one student who is both from math and science = 30/300 = 1/10

To learn more about the probability visit:

https://brainly.com/question/24756209

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.