Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using compound interest, it is found that:
a) $1,270.70 will be in the account after 6 years.
b) It will take 17.53 years for the $1000 to double.
What is compound interest?
The amount of money earned, in compound interest, after t years, is given by:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
In which:
- A(t) is the amount of money after t years.
- P is the principal(the initial sum of money).
- r is the interest rate(as a decimal value).
- n is the number of times that interest is compounded per year.
- t is the time in years for which the money is invested or borrowed.
In this problem, the parameters are given as follows:
[tex]A(0) = 1000, r = 0.04, n = 12[/tex]
Item a:
Over 6 years, that is t = 6, thus:
[tex]A(t) = P\left(1 + \frac{r}{n}\right)^{nt}[/tex]
[tex]A(t) = 1000\left(1 + \frac{0.04}{12}\right)^{12 \times 6}[/tex]
[tex]A(t) = 1270.7[/tex]
$1,270.70 will be in the account after 6 years.
Item b:
This is t for which A(t) = 2P = 2000, hence:
[tex]2000 = 1000\left(1 + \frac{0.04}{12}\right)^{12t}[/tex]
[tex](1.0033)^{12t} = 2[/tex]
[tex]\log{(1.0033)^{12t}} = \log{2}[/tex]
[tex]12\log{(1.0033)} = \log{2}[/tex]
[tex]t = \frac{\log{2}}{12\log{1.0033}}[/tex]
[tex]t = 17.53[/tex]
It will take 17.53 years for the $1000 to double.
More can be learned about compound interest at https://brainly.com/question/25781328
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.