Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Hi there!
We can begin by using Lenz's Law:
[tex]\epsilon = -N\frac{d\Phi _B}{dt}[/tex]
N = Number of Loops
Ф = Magnetic Flux (Wb)
t = time (s)
Also, we can rewrite this as:
[tex]\epsilon = -NA\frac{dB}{dt}[/tex]
A = Area (m²)
Since the area is constant, we can take it out of the derivative.
This is a single wire loop, so N = 1.
Now, we can develop an expression for the induced emf.
We can begin by solving for the area:
[tex]A = \pi r^2 \\\\d = r/2 r = 0.05cm \\\\A = \pi (0.05^2) = 0.007854 m^2[/tex]
We can also express dB/dt as:
[tex]\frac{dB}{dt} = \frac{\Delta B}{t} = \frac{0-0.5}{t} = \frac{-0.5}{t}[/tex]
Now, we can create an equation.
[tex]\epsilon = -(1)(0.007854)\frac{-0.5}{t} = \frac{0.003927}{t}[/tex]
To solve the system, we must now develop an expression for current given an emf and resistance.
Begin by calculating the resistance of the copper wire:
[tex]R = \frac{\rho L}{A}[/tex]
ρ = Resistivity of copper (1.72 * 10⁻⁸ Ωm)
L = Length of wire (0.01 m)
A = cross section area (m²)
Solve:
[tex]R = \frac{(1.72*10^{-8})(0.01)}{\pi (0.001^2)} = 5.475 * 10^{-5} \Omega m[/tex]
Now, we can use the following relation (Ohm's Law):
[tex]\epsilon = iR\\\\\epsilon = \frac{Q}{t}R[/tex]
*Since current is equivalent to Q/t.
Plug in the value of R and set the two equations equal to each other.
[tex]\frac{Q}{t}(5.475 * 10^{-5}) = \frac{0.003927}{t}[/tex]
Cancel out 't'.
[tex]Q (5.475 * 10^{-5}) = 0.003927 \\\\Q = \frac{0.003927}{5.475*10^{-5}} = \boxed{71.73 C}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.