At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
In the first integral, substitute [tex]x \to e^{\sqrt{e^x}}[/tex]:
[tex]\displaystyle I = \int_0^1 e^{\sqrt{e^x}} \, dx = 2 \int_e^{e^{\sqrt e}} \frac{dx}{\ln(x)}[/tex]
In the second integral, integrate by parts:
[tex]\displaystyle J = \int_e^{e^{\sqrt e}} \ln(\ln(x)) \, dx = \dfrac12 e^{\sqrt e} - \int_e^{e^{\sqrt e}} \frac{dx}{\ln(x)}[/tex]
It follows that
[tex]\dfrac{10^5}{e^{\sqrt e}}(I+2J) = \dfrac{10^5}{e^{\sqrt e}} \times e^{\sqrt e} = \boxed{10^5}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.