Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

[tex] \rm \int_{0}^ \infty \frac{ \sqrt[ \scriptsize\phi]{x} \tan^{- 1} (x)}{(1 + {x}^{ \phi} {)}^{2} } {}^{} {} \: dx\\ [/tex]​

Sagot :

With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that

[tex]I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx[/tex]

Replace [tex]x \to x^{\frac1\phi} = x^{\phi-1}[/tex] :

[tex]I = \displaystyle \frac1\phi \int_0^\infty \frac{\tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx[/tex]

Split the integral at x = 1. For the integral over [1, ∞), substitute [tex]x \to \frac1x[/tex] :

[tex]\displaystyle \int_1^\infty \frac{\tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx = \int_0^1 \frac{\tan^{-1}(x^{1-\phi})}{\left(1+\frac1x\right)^2} \frac{dx}{x^2} = \int_0^1 \frac{\pi2 - \tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx[/tex]

The integrals involving tan⁻¹ disappear, and we're left with

[tex]I = \displaystyle \frac\pi{2\phi} \int_0^1 \frac{dx}{(1+x)^2} = \boxed{\frac\pi{4\phi}}[/tex]