At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

[tex] \rm \int_{0}^ \infty \frac{ \sqrt[ \scriptsize\phi]{x} \tan^{- 1} (x)}{(1 + {x}^{ \phi} {)}^{2} } {}^{} {} \: dx\\ [/tex]​

Sagot :

With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that

[tex]I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx[/tex]

Replace [tex]x \to x^{\frac1\phi} = x^{\phi-1}[/tex] :

[tex]I = \displaystyle \frac1\phi \int_0^\infty \frac{\tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx[/tex]

Split the integral at x = 1. For the integral over [1, ∞), substitute [tex]x \to \frac1x[/tex] :

[tex]\displaystyle \int_1^\infty \frac{\tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx = \int_0^1 \frac{\tan^{-1}(x^{1-\phi})}{\left(1+\frac1x\right)^2} \frac{dx}{x^2} = \int_0^1 \frac{\pi2 - \tan^{-1}(x^{\phi-1})}{(1+x)^2} \, dx[/tex]

The integrals involving tan⁻¹ disappear, and we're left with

[tex]I = \displaystyle \frac\pi{2\phi} \int_0^1 \frac{dx}{(1+x)^2} = \boxed{\frac\pi{4\phi}}[/tex]