Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
So, the definite integral [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]
Given that
[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex]
We find
[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]
Definite integrals
Definite integrals are integral values that are obtained by integrating a function between two values.
So, [tex]Integral \int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]
So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx[/tex]
Since
[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex],
Substituting this into the equation the equation, we have
[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = 4 - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6 X 13 \\= 4 - 78\\= -74[/tex]
So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]
Learn more about definite integrals here:
https://brainly.com/question/17074932
The value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.
What is a definite integral?
A definite Integral is a difference between the values of the integral at the specified upper and lower limit of the independent variable.
The given function is;
[tex]\rm \int\limits^1_0 {x^2} \, dx=13[/tex]
Calculation of the value of the function by using integration;
[tex]\rm= \int\limits{(4-6x^2)} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6\int\limits^1_0 {x^2} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6(13)\\\\ =4[x]^1_0-78\\\\= 4[1-0]-78\\\\=4-78\\\\=-74[/tex]
Hence, the value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.
To know more about definite integration click the link given below.
https://brainly.com/question/18125359
#SPJ4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.