Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
So, the definite integral [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]
Given that
[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex]
We find
[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]
Definite integrals
Definite integrals are integral values that are obtained by integrating a function between two values.
So, [tex]Integral \int\limits^1_0 {(4 - 6x^{2} )} \, dx[/tex]
So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx[/tex]
Since
[tex]\int\limits^1_0 {x^{2} } \, dx = 13[/tex],
Substituting this into the equation the equation, we have
[tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx = 4 - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6 X 13 \\= 4 - 78\\= -74[/tex]
So, [tex]\int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74[/tex]
Learn more about definite integrals here:
https://brainly.com/question/17074932
The value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.
What is a definite integral?
A definite Integral is a difference between the values of the integral at the specified upper and lower limit of the independent variable.
The given function is;
[tex]\rm \int\limits^1_0 {x^2} \, dx=13[/tex]
Calculation of the value of the function by using integration;
[tex]\rm= \int\limits{(4-6x^2)} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6\int\limits^1_0 {x^2} \, dx \\\\=4 \int\limits^1_0 {} \, dx -6(13)\\\\ =4[x]^1_0-78\\\\= 4[1-0]-78\\\\=4-78\\\\=-74[/tex]
Hence, the value of the function [tex]\rm \int\limits{(4-6x^2)} \, dx[/tex] is -74.
To know more about definite integration click the link given below.
https://brainly.com/question/18125359
#SPJ4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.