Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution and the central limit theorem, it is found that there is a 0.24 = 24% probability of observing a difference this large or larger.
Normal Probability Distribution
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex], as long as [tex]np \geq 10[/tex] and [tex]n(1 - p) \geq 10[/tex].
- When two variables are subtracted, the mean is the subtraction of the means, while the standard deviation is the square root of the sum of the variances.
In this problem, for each sample, the mean and standard error are given by:
[tex]\mu_I = 0.4, s_I = \sqrt{\frac{0.4(0.6)}{75}} = 0.0566[/tex]
[tex]\mu_{II} = 0.4, s_{II} = \sqrt{\frac{0.4(0.6)}{90}} = 0.0516[/tex]
Hence, for the distribution of differences, the mean and the standard error are given by:
[tex]\mu = \mu_I - \mu_{II} = 0.4 - 0.4 = 0[/tex]
[tex]s = \sqrt{s_I^2 + s_{II}^2} = \sqrt{0.0566^2 + 0.0516^2} = 0.0766[/tex]
The probability of observing a difference this large or larger is given by P(|Z| > Zx), in which Zx is the z-score when X = 0.0766. Hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.09 - 0}{0.0766}[/tex]
Z = 1.175.
Hence the probability is P(|Z| > 1.175), which is 2 multiplied by the p-value of Z = -1.175. Then:
2 x 0.12 = 0.24.
0.24 = 24% probability of observing a difference this large or larger.
To learn more about the normal distribution and the central limit theorem, you can check https://brainly.com/question/24663213
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.