Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
For A 100-cm long dipole is excited by a sinusoidally varying current with an amplitude i0=2 , the time average power radiated is mathematically given as
P=0.1577w
What is the time average power radiated by the dipole if the oscillating frequency is 150 mhz?
Generally, the equation for the is mathematically given as
[tex]\lambda =\frac{c}{f}[/tex]
Therefore
[tex]\lambda=\frac{3\times 10^{8}}{10^{6}}[/tex]
lambda=300m
In conclusion, for the power
[tex]P=40\pi^{2}(I_{0})^{2}(\frac{l}{\lambda})^{2}\\\\P=40* (3.14)^{2}\times6^{2} (\frac{1}{300})^{2}[/tex]
P=0.1577w
Read more about Power
https://brainly.com/question/10203153
The time-averaged power radiated by the dipole if the oscillating frequency is 150 MHz is 0.1577 w.
What is wavelength?
The distance between identical points (adjacent crests) in adjacent cycles of a waveform signal carried in space or down a wire is defined as the wavelength.
Given that the current is 2 amp, while the frequency is 150 MHz. Therefore, the wavelength can be written as,
[tex]\lambda = \dfrac cf = \dfrac{3 \times 10^8}{10^6} = 300\rm\ m[/tex]
Now, the power can be written as,
[tex]P=40 \pi^2 \times (I_o)^2 \times (\dfrac{l}{\lambda})^2\\\\P = 40 \times \pi ^2 \times 6^2 \times (\dfrac{1}{300})^2\\\\P = 0.1577\rm\ w[/tex]
Hence, the time-average power radiated by the dipole if the oscillating frequency is 150 MHz is 0.1577 w.
Learn more about Wavelength:
https://brainly.com/question/13533093
#SPJ4
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.