Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Evaluate the triple integral. X dv, where e is bounded by the paraboloid x = 4y2 4z2 and the plane x = 4. E

Sagot :

The triple integral that is bounded by a paraboloid x = 4y2 4z2 given as 16.762

Parabloid, x = 4y² + 4z²

plane x = 4

x = 4y² + 4z²

x = 4

4 = 4y² + 4z²

4 = 4 (y² + z² )

1 = y² + z²

from polar coordinates

y = r cos θ

z = r sin θ

r² = y² + z²

The limits of the integral

0 ≤ θ ≤ 2π

4r² ≤ x ≤ 4

0 ≤ r ≤ 1

[tex]\int\limits\int\limits\int\limits {x} \, dV = \int\limits^1_0\int\limits^a_b\int\limits^c_d {x} \, dx ( rdrdz)[/tex]

where

a = 4

b = 4r²

c = 2r

d = 0

The first integral using limits c and d gives:

[tex]2pi\int\limits^1_0\int\limits^a_b {xr} \, dx[/tex]

The second integral using limits a and b

[tex]pi\int\limits^1_0 {16 } } \, rdr - pi\int\limits^1_0 {16r^{5} \, dx[/tex]

[tex]16pi\int\limits^1_0 { } } \, rdr - 16pi\int\limits^1_0 {r^{5} \, dx[/tex]

[tex]16pi\int\limits^1_0 { } } \, [r-r^{5}]dr[/tex]

The third integral using limits 1 and 0 gives: 16.762

Read more on Triple integral here: https://brainly.com/question/27171802

The triple integral that is bounded by a paraboloid x = 4y2 4z2 given as 16.762

What is integration?

Integration is defined as adding small parts to form a new significant part.

Parabloid, x = 4y² + 4z²

plane x = 4

x = 4y² + 4z²

x = 4

4 = 4y² + 4z²

4 = 4 (y² + z² )

1 = y² + z²

from polar coordinates

y = r cos θ

z = r sin θ

r² = y² + z²

The limits of the integral

0 ≤ θ ≤ 2π

4r² ≤ x ≤ 4

0 ≤ r ≤ 1

[tex]\int\int\intxdV = \int_0_1\int_b_a\int_d_cxdx(rdrdz)[/tex]

where

a = 4

b = 4r²

c = 2r

d = 0

The first integral using limits c and d gives:

[tex]2\pi\int_0^1\int_b^axydx[/tex]

The second integral using limits a and b

[tex]\pi \int_0^116rdr-\pi\int_0^116r^5dx[/tex]

[tex]16\pi \int_0^1rdr-16\pi\int_0^1 r^5dx[/tex]

[tex]16\pi\int_0^1[r-r^5]dr[/tex]

The third integral using limits 1 and 0 gives: 16.762

Read more on Triple integral here:

brainly.com/question/27171802

#SPJ4

We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.