Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A thundercloud has an electric charge of 48.8 C near the top of the cloud and –41.7 C near the bottom of the cloud. The magnitude of the electric force between these two charges is 7980000 N. What is the average separation between these charges

a/ 1.51 km
b/ 2.53 Km
c/ 1.51 m
d/ 1001 m


Sagot :

Answer: 1.51 km

Explanation:

Coulomb's Law: The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.

Or,   [tex]\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}}[/tex]

Where Q1 and Q2 are magnitude of two charges and r is distance between them:

Given:

Q1 = Charge near top of cloud = 48.8 C

Q2 = Charge near the bottom of cloud = -41.7 C

Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N

k = 8.99 x 109Nm^2/C^2

So,

[tex]\begin{aligned}&7.98 \times 10^{6}=\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{48.8 \mathrm{C} \times 41.7 \mathrm{C}}{\mathrm{r}^{2}} \\&r=\sqrt{\frac{1.8294 \times 10^{13}}{7.98 \times 10^{6}}}=1.514 \times 10^{3} \mathrm{~m}=1.51 \mathrm{~km}\end{aligned}[/tex]

Therefore, the separation between the two charges (r) = 1.51 km