Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]\textit{Amount for Exponential Decay using Half-Life} \\\\ A=P\left( \frac{1}{2} \right)^{\frac{t}{h}}\qquad \begin{cases} A=\textit{current amount}\\ P=\textit{initial amount}\dotfill &7\\ t=\textit{elapsed time}\dotfill &127\\ h=\textit{half-life}\dotfill &64.8 \end{cases} \\\\\\ A=7\left( \frac{1}{2} \right)^{\frac{127}{64.8}}\implies A=7\left( \frac{1}{2} \right)^{\frac{635}{324}}\implies A\approx 1.80[/tex]
The half-life of sr-85, which may be used in bone scans, is 64.8 days. 1.80 milligrams of a 7 mg sample will be left after 127 days.
What is half-life?
Half-life is defined as the time required for a quantity to reduce to half of its initial value.
The half-life of sr-85, which may be used in bone scans, is 64. 8 days.
We need to find how many milligrams of a 7 mg sample will be left after 127 days.
[tex]\rm A = P\frac{1}{2} ^{t/h}[/tex]
here A = current amount
P = inital amount
t = time
h = half life
So,
[tex]\rm A = 7\frac{1}{2} ^{127/64.8}[/tex]
[tex]\rm A = 7\frac{1}{2} ^{635/324}\\A = 1.80[/tex]
Learn more about half-life;
https://brainly.com/question/24710827
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.