At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The Laplace transform of the non-homogeneous second order differential equation is [tex]\mathcal {L} \{f(t)\} = \frac{4\cdot (s+6)}{s\cdot (s-4)\cdot (s+1)\cdot (s-5)} +\frac{1}{s} -\frac{1}{s\cdot (s-5)}[/tex].
How to determine the Laplace transform of a non-homogeneous second order differential equation
A Laplace transform is a frequency-based algebraic substitution method used to determine the solutions of differential equations in a quick and efficient manner.
In this question we shall use the following Laplace transforms:
[tex]\mathcal {L} \{f(t) + g(t)\} = \mathcal {L} \{f(t)\} + \mathcal {L}\{g(t)\}[/tex] (1)
[tex]\mathcal {L} \{\alpha\cdot f(t)\} = \alpha\cdot \mathcal {L} \{f(t)\}[/tex] (2)
[tex]\mathcal{L} \left\{y^{(n)} \right\} = s^{n}\cdot \matcal {L}\{f(t)\}-s^{n-1}\cdot y(0) -...-y^{(n)}(0)[/tex] (3)
[tex]\mathcal {L} \{e^{-a\cdot t}\} = \frac{1}{s+a}[/tex] (4)
Now we proceed to derive an expression fo the Laplace transform of the solution of the differential equation:
[tex]y'' -5\cdot y' = 8\cdot e^{4\cdot t}-4\cdot e^{-t}[/tex]
[tex]s^{2}\cdot \mathcal {L}\{f(t)\}-5\cdot y(0) - y'(0) - 5\cdot s \cdot \mathcal {L} \{f(t)\} +5\cdot y(0) = \frac{8}{s-4}-\frac{4}{s+1}[/tex]
[tex]\mathcal {L} \{f(t)\} = \frac{4\cdot (s+6)}{s\cdot (s-4)\cdot (s+1)\cdot (s-5)} +\frac{1}{s} -\frac{1}{s\cdot (s-5)}[/tex]
The Laplace transform of the non-homogeneous second order differential equation is [tex]\mathcal {L} \{f(t)\} = \frac{4\cdot (s+6)}{s\cdot (s-4)\cdot (s+1)\cdot (s-5)} +\frac{1}{s} -\frac{1}{s\cdot (s-5)}[/tex]. [tex]\blacksquare[/tex]
To learn more on Laplace transforms, we kindl invite to check this verified question: https://brainly.com/question/2272409
The Laplace transform Y'' − 5y' = 8e4t − 4e−t when y(0) = 1, y'(0) = −1 for f(t) = 8e4t − 4e−t would be [tex]\frac{4(s+6)}{s.(s-4)(s+1).(s-5)} + \frac{1}{s} - \frac{1}{s.(s-5)}[/tex].
What is Laplace transform?
A Laplace transform is a frequency-based algebraic substitution method used to determine the solutions of differential equations quickly and efficiently.
The Laplace transform
L[ f(t) + g(t) ] = Lf(t) + Lg(t)
Also,
L [[tex]y^{n}[/tex]] = [tex]s^{n} . L[ f(t) ] - s^{n-1} .y(0) .....y^{n}(0)[/tex]
We have
Y'' − 5y' = 8 . e^4t − 4 . e−t
[tex]s^{2} . L[ f(t) ] - 5. y(0)- y'(0) .....y^{n}(0)[/tex]
y(0) = 1, y'(0) = −1
for f(t) = 8e4t − 4e−t.
= [tex]\frac{8}{s-4} - \frac{4}{s+1}[/tex]
L [f(t)] = [tex]\frac{4(s+6)}{s.(s-4)(s+1).(s-5)} + \frac{1}{s} - \frac{1}{s.(s-5)}[/tex]
Learn more about Laplace transform ;
https://brainly.com/question/14487937
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.