Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
(a) 144 ft
(b) 2 s
(c) 5 s
(d) 128 ft
Step-by-step explanation:
[tex]h(t) = -16t^2 + 64t + 80[/tex]
Part (a)
To find the turning point of the parabola:
1. differentiate the function:
[tex]\implies h'(t) = -32t + 64[/tex]
2. Set it to zero and solve for t:
[tex]\implies h'(t) =0[/tex]
[tex]\implies -32t + 64=0[/tex]
[tex]\implies 32t = 64[/tex]
[tex]\implies t=2[/tex]
3. Input found value of t back into the function and solve for h:
[tex]\implies h(2) = -16(2)^2 + 64(2) + 80=144[/tex]
Therefore, the maximum height reached by the ball is 144 ft
Part (b)
As found in part (a), the maximum height is reached when t = 2, so the ball reached its maximum height at 2 seconds.
Part (c)
The ball will hit the ground when h(t) = 0
1. Set the function to zero
[tex]\implies h(t)=0[/tex]
[tex]\implies -16t^2 + 64t + 80=0[/tex]
2. Solve for t:
Divide both sides by 16
[tex]\implies -t^2 + 4t + 5=0[/tex]
[tex]\implies t^2 - 4t - 5=0[/tex]
Factor:
[tex]\implies t^2 +t-5t - 5=0[/tex]
[tex]\implies t(t+1)-5(t+1)=0[/tex]
[tex]\implies (t+1)(t-5)=0[/tex]
Therefore:
[tex](t+1)=0 \implies t=-1[/tex]
[tex](t-5)=0 \implies t=5[/tex]
As time is positive, t = 5
So the ball will hit the ground at 5 seconds.
Part (d)
To find the height of the ball after 1 second, input t = 1 into the function and solve for h:
[tex]\implies h(1) = -16(1)^2 + 64(1) + 80=128[/tex]
Therefore, the height of the ball after 1 second is 128 ft
--------------------------------------------------------------------------------------
Parts (a) & (b) - alternative method
Rewrite the function in vertex form by completing the square.
Set the function to zero:
[tex]\implies-16t^2 + 64t + 80=0[/tex]
Subtract 144 from both sides:
[tex]\implies -16t^2+64t-64=-144[/tex]
Factor out -16:
[tex]\implies -16(t^2 - 4t +4)=-144[/tex]
Factor expression in brackets:
[tex]\implies -16(t-2)^2=-144[/tex]
Add 144 to both sides:
[tex]\implies -16(t-2)^2+144=0[/tex]
Therefore:
[tex]\implies h(t)=-16(t-2)^2+144[/tex]
The maximum height is the y-value of the vertex.
The vertex is (2, 144) so the maximum height is 144 ft.
The time the ball reached the max height is the x-value of vertex.
So the time then the ball reached the maximum height is 2 s
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.