Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The trigonometry identity sin(x + y) = sinx cosy + cosx siny.
What is sin(x + y) identity in trigonometry?
sin(x + y) is one of the identities in trigonometry for compound angles.
The angle (x + y) represents the compound angles.
sin(x + y) = sinx cosy + cosx siny
To prove sin(x + y) = sinx cosy + cosx siny
Consider OX as a rotating line anti-clockwise. Let angle XOY = a
the making of an acute angle b the rotation in the same direction is
angleYOZ = b , angle XOZ = a + b
From triangle PTR,
∠TPR = 90 - ∠PRT , ∠ROX = a
From the right-angled triangle PQO
sin(a + b) = PQ/OP
= (PT + TQ) / OP
= PT/OP + TQ/OP
= PT/PR × PR/OP + RS/OR × OR/OP
= cos (∠TPR ) sinb + sina cosb
= sina cosb + cosa sinb
if we replace a=x and b=y
Therefore, sin(x + y) = sinx cosy + cosx siny.
Learn more about trigonometry identity;
https://brainly.com/question/63577
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.