Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Hi there!
Recall that:
[tex]\Delta V = -\int\limits^a_b {E \cdot } \, dx[/tex]
Given an electric field, the potential difference can be solved by using integration. Similarly:
[tex]E = -\frac{dV}{dx}[/tex]
We can differentiate the electric potential equation to solve for the electric field.
Use the power rule:
[tex]\frac{dy}{dx} x^n = nx^{n - 1}[/tex]
Differentiate the given equation.
[tex]-\frac{dV}{dx}\frac{7}{x^2} =- \frac{dV}{dx}7x^{-2} = -(-14x^{-3}) = \frac{14}{x^3}[/tex]
Or:
[tex]\boxed{E(x) = \frac{14}{x^3}}[/tex]
The component of the electric field in that region is E = 14/x³ if the electric potential in a region is given by v(x)=7/x2
What is an electric field?
An electric field is an electric property that is connected with any location in space where a charge exists in any form. The electric force per unit charge is another term for an electric field.
We have:
The electric potential in a region is given by:
[tex]\rm V(x) = \frac{7}{x^2}[/tex]
We know the relation between potential difference and an electric field is given by:
[tex]\rm \triangle V = \int\limits^a_b {E.} \, dx[/tex]
If the electric field is given, then:
[tex]\rm E = -\frac{dV}{dx}[/tex]
[tex]\rm E = -\frac{d(7x^{-2} )}{dx}[/tex]
After differentiate:
[tex]\rm E = -(-14x^{-3})[/tex] or
[tex]\rm E = \frac{14}{x^3}[/tex]
Thus, the component of the electric field in that region is E = 14/x³ if the electric potential in a region is given by v(x)=7/x2
Learn more about the electric field here:
https://brainly.com/question/26690770
#SPJ4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.