Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The period of the given function is T = 2π
What is the period of the function?
The period T of a function f(x) is such that:
f(x + T) = f(x).
In this case, our function is:
f(θ) = e^{iθ}
Remember that this can be written as:
f(θ) = cos(θ) + i*sin(θ)
So yes, this is in did a periodic function.
Then the period of the function f(θ) is the same as the period of the cosine and sine functions, which we know is T = 2π.
If you want to learn more about periodic functions, you can read:
https://brainly.com/question/26449711
The period of the considered function f(θ) = e^{iθ} is found to be P = 2π (assuming 'i' refers to 'iota' and 'e' refers to the base of the natural logarithm)
What is euler's formula?
For any real value θ, we have:
[tex]e^{i\theta} = \cos(\theta) + i\sin(\theta)[/tex]
where 'e' is the base of the natural logarithm, and 'i' is iota, the imaginary unit.
What are periodic functions?
Functions which repeats their values after a fixed interval, are called periodic function.
For a function [tex]y = f(x)[/tex], it is called periodic with period 'T' if we have:
[tex]y = f(x) = f(x + T) \: \forall x \in D(f)[/tex]
where D(F) is the domain of the function f.
Suppose that, the period of the function [tex]f(\theta) = e^{i \theta}[/tex] be P, then we get:
[tex]f(\theta + P) = f(\theta)\\\\e^{i(\theta)} = e^{i(\theta + P)}\\\\\cos(\theta) + i\sin(\theta) = \cos(\theta + P) + i\sin(\theta + P)[/tex]
When two complex numbers are equal, then their real parts are equal and their imaginary parts are equal.
That means,
[tex]\cos(\theta) + i\sin(\theta) = \cos(\theta + P) + i\sin(\theta + P)[/tex] implies that:
[tex]\cos(\theta) = \cos(\theta + P)\\\sin(\theta) = \sin(\theta + P)[/tex]
Also, we know that the period of sine and cosine function is [tex]2\pi[/tex]
Thus, we get:
[tex]P = 2\pi[/tex]
Thus, the period of the function [tex]f(\theta) = e^{i \theta}[/tex] is P = 2π
Learn more about periodic functions here:
brainly.com/question/12529476
#SPJ4
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.