Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using the Central Limit Theorem, it is found that the standard deviation is of 0.0971.
What does the Central Limit Theorem states?
- It states that for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex], as long as [tex]np \geq 10[/tex] and [tex]n(1 - p) \geq 10[/tex].
- It also states that when two variables are subtracted, the standard deviation is the square root of the sum of the variances.
In this problem, for each sample, the standard error is given by:
[tex]s_I = \sqrt{\frac{0.25(0.75)}{50}} = 0.0612[/tex]
[tex]s_{II} = \sqrt{\frac{0.35(0.65)}{40}} = 0.0754[/tex]
Hence, for the distribution of differences, it is given by:
[tex]s = \sqrt{s_I^2 + s_{II}^2} = \sqrt{0.0612^2 + 0.0754^2} = 0.0971[/tex]
More can be learned about the Central Limit Theorem at https://brainly.com/question/24663213
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.