At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the length of a pendulum that has a period of 4. 89 seconds?

Sagot :

leena

Hi there!

We can use the following equation for a simple pendulum:

[tex]T = 2\pi \sqrt{\frac{L}{g}}[/tex]

T = Period (4.89 s)
L = length (? m)
g = acceleration due to gravity (9.8 m/s²)

Rearrange the equation to solve for L.

[tex]T^2 = 4\pi ^2 \frac{L}{g}\\\\L = \frac{gT^2}{4\pi ^2}[/tex]

[tex]L = \frac{(9.8)(4.89^2)}{4\pi^2} = \boxed{5.936 \frac{m}{s}}[/tex]

A pendulum is a body hanging from a fixed point that swings back and forth under the effect of gravity. The length of a pendulum that has a period of 4.89 seconds is 5.936 meters.

What is a pendulum?

A pendulum is a body hanging from a fixed point that swings back and forth under the effect of gravity. Pendulums are employed to govern the movement of clocks because the time interval for each full oscillation, known as the period, remains constant.

Given that the time period is 4.89 seconds, therefore, the length of the pendulum can be written as,

[tex]\rm T = 2\pi \sqrt{\dfrac{L}{g}}\\\\4.89 = 2\pi \sqrt{\dfrac{L}{9.81}}\\\\L = 5.936\ m[/tex]

Hence, the length of a pendulum that has a period of 4.89 seconds is 5.936 meters.

Learn more about Pendulum:

https://brainly.com/question/14759840

#SPJ4