Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
p(b|a) =5/7
Step-by-step explanation:
hello :
note : p(b|a) = p(a and b)/p(a)
p(b|a) = 25/35 =5/7
The value of the probability of the event B given A, symbolically P(B|A), when it is known that P(A) = 0.35, P(B) = 0.45 and P(A∩ B) =0.25 is found as: P(B|A) = 5/7
What is chain rule in probability?
For two events A and B, by chain rule, we have:
[tex]P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)[/tex]
where P(A|B) is probability of occurrence of A given that B already occurred.
We're given that:
- P(A) = 0.35
- P(B) = 0.45
- P(A and B) = P(A ∩ B) = 0.25
- P(B|A) = to be known.
Using the chain rule of probability, we get:
[tex]P(A \cap B) = P(A)P(B|A) \\\\P(B|A) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{0.25}{0.35} = \dfrac{5}{7}[/tex]
Thus, the value of the probability of the event B given A, symbolically P(B|A), when it is known that P(A) = 0.35, P(B) = 0.45 and P(A∩ B) =0.25 is found as: P(B|A) = 5/7
Learn more about chain rule here:
https://brainly.com/question/21081988
#SPJ4
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.