Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The new period of the pendulum when it is taken to the new planet is double of its period on Earth.
Period of a pendulum
The period of a pendulum is given by the following formula;
[tex]T = 2\pi \sqrt{\frac{l}{g} }[/tex]
where;
- g is acceleration due to gravity of the pendulum
- L is length of the pendulum
Acceleration due to gravity of the new planet
The acceleration due to gravity of the new planet is calculated as follows;
[tex]g_E = \frac{GM_E}{R_E^2} = 9.81 \ m/s^2 \\\\g(new \ planet) = \frac{G(4M_E)}{(4R_E)^2} = \frac{4GM_E}{16R_E^2} = \frac{GM_E}{4R_E^2} = \frac{9.81}{4} = 2.45 \ m/s^2[/tex]
New period of the pendulum
[tex]T = 2\pi \sqrt{\frac{l}{g} } \\\\T =\frac{2\pi \sqrt{l} }{\sqrt{g} } \\\\T_1\sqrt{g_1} = T_2\sqrt{g_2} \\\\T_E\sqrt{g_E} = T\sqrt{g} \\\\T = \frac{T_E\sqrt{g_E}}{\sqrt{g} } \\\\T = \frac{T_E \times \sqrt{9.81} }{\sqrt{2.45} } \\\\T = 2T_E[/tex]
Thus, the new period of the pendulum when it is taken to the new planet is double of its period on Earth.
Learn more about period of pendulum here: https://brainly.com/question/26449711
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.