Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The new period of the pendulum when it is taken to the new planet is double of its period on Earth.
Period of a pendulum
The period of a pendulum is given by the following formula;
[tex]T = 2\pi \sqrt{\frac{l}{g} }[/tex]
where;
- g is acceleration due to gravity of the pendulum
- L is length of the pendulum
Acceleration due to gravity of the new planet
The acceleration due to gravity of the new planet is calculated as follows;
[tex]g_E = \frac{GM_E}{R_E^2} = 9.81 \ m/s^2 \\\\g(new \ planet) = \frac{G(4M_E)}{(4R_E)^2} = \frac{4GM_E}{16R_E^2} = \frac{GM_E}{4R_E^2} = \frac{9.81}{4} = 2.45 \ m/s^2[/tex]
New period of the pendulum
[tex]T = 2\pi \sqrt{\frac{l}{g} } \\\\T =\frac{2\pi \sqrt{l} }{\sqrt{g} } \\\\T_1\sqrt{g_1} = T_2\sqrt{g_2} \\\\T_E\sqrt{g_E} = T\sqrt{g} \\\\T = \frac{T_E\sqrt{g_E}}{\sqrt{g} } \\\\T = \frac{T_E \times \sqrt{9.81} }{\sqrt{2.45} } \\\\T = 2T_E[/tex]
Thus, the new period of the pendulum when it is taken to the new planet is double of its period on Earth.
Learn more about period of pendulum here: https://brainly.com/question/26449711
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.