At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.
Given expression 8x² − 144x + 864 is used to approximate a small town's population in thousands from 1998 to 2018, where x represents the number of years since 1998.
What is a quadratic equation?
A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.
Given expression is 8x² − 144x + 864
Let y = 8x² − 144x + 864
also, y - 864 = 8x² - 144x
by Extracting common factor 8 on the right side
y - 864 = 8(x² - 18x)
Add (18/2)² on both sides, we get
y - 864 + 8(18/2)² = 8 (x² - 18x + 81²)
y - 864 + 648 = 8 (x² - 8x + 9)
on simplification
y - 216 = 8 (x - 9)²
y = 8(x - 9)² + 216
therefore, y = 8 (x - 9)² + 216
The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.
Learn more about a quadratic equation here:
brainly.com/question/2263981
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.