At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The expression 8x2 − 144x 864 is used to approximate a small town's population in thousands from 1998 to 2018, where x represents the number of years since 1998. choose the equivalent expression that is most useful for finding the year where the population was at a minimum. 8(x2 − 18x 108) 8(x2 − 18x) 108 8(x − 9)2 − 216 8(x − 9)2 216

Sagot :

The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.

Given expression 8x² − 144x + 864 is used to approximate a small town's population in thousands from 1998 to 2018, where x represents the number of years since 1998.

What is a quadratic equation?

A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is  ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.

Given expression is 8x² − 144x + 864

Let y = 8x² − 144x + 864

also,  y - 864 = 8x² - 144x

by Extracting common factor 8 on the right side

y - 864 = 8(x² - 18x)

Add (18/2)² on both sides, we get

y - 864 + 8(18/2)² = 8 (x² - 18x + 81²)

y - 864 + 648 = 8 (x² - 8x + 9)

on simplification

y - 216 = 8 (x - 9)²

y = 8(x - 9)² + 216

therefore, y = 8 (x - 9)² + 216

The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.

Learn more about a quadratic equation here:

brainly.com/question/2263981