Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Which statement describes the behavior of the function f (x) = startfraction 2 x over 1 minus x squared endfraction?

Sagot :

The statement that describes the behavior of the function f(x) = 2x/(1-x²) is given by: Option B: The graph approaches 0 as x approaches infinity

How to find the value of the function as x approaches infinity (+ve or -ve)?

If limits exist, we can take limits of the function, where x tends to -∞ or ∞, and that limiting value will be the value the function will approach.

For the considered case, the function is:

[tex]f(x) = \dfrac{2x}{1-x^2}[/tex]

The missing options are:

  1. The graph approaches –2 as x approaches infinity.
  2. The graph approaches 0 as x approaches infinity.
  3. The graph approaches 1 as x approaches infinity.
  4. The graph approaches 2 as x approaches infinity.

So we need to find the limit of the function as x approaches infinity.

[tex]lim_{x\rightarrow \infty}f(x) = lim_{x\rightarrow \infty}\dfrac{2x}{1-x^2} = lim_{x\rightarrow \infty}\dfrac{2x/x^2}{1/x^2 - 1} = lim_{x\rightarrow \infty}\dfrac{2/x}{1/x^2 - 1}\\\\lim_{x\rightarrow \infty}f(x) = \dfrac{lim_{x\rightarrow \infty}(2/x^2)}{lim_{x\rightarrow \infty}(1/x^2 - 1)} = \dfrac{0}{0-1} = \dfrac{0}{-1} = 0[/tex]

Since the value of the function approaches 0 as x approaches infinity, so as its graph will do.

Thus, the statement that describes the behavior of the function f(x) = 2x/(1-x²) is given by: Option B: The graph approaches 0 as x approaches infinity

Learn more about limits of a function here:

https://brainly.com/question/13146225

View image astha8579