Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The transformations that are needed to change the parent cosine function to y = 0.35×cos(8(x-π/4)) are:
- vertical stretch of 0.35
- horizontal compression of period of [tex]\pi/4[/tex]
- phase shift of [tex]\pi/4[/tex] to right
How does transformation of a function happens?
The transformation of a function may involve any change.
Usually, these can be shift horizontally (by transforming inputs) or vertically (by transforming output), stretching (multiplying outputs or inputs) etc.
If the original function is [tex]y = f(x)[/tex], assuming horizontal axis is input axis and vertical is for outputs, then:
- Horizontal shift (also called phase shift):
- Left shift by c units: [tex]y = f(x+c)[/tex]earlier)
- Right shift by c units: [tex]y = f(x-c)[/tex]output, but c units late)
- Vertical shift:
- Up by d units: [tex]y = f(x) + d[/tex]
- Down by d units: [tex]y = f(x) - d[/tex]
- Stretching:
- Vertical stretch by a factor k: [tex]y = k \times f(x)[/tex]
- Horizontal stretch by a factor k: [tex]y = f(\dfrac{x}{k})[/tex]
For this case, we're specified that:
y = cos(x) (the parent cosine function) was transformed to [tex]y = 0.35\cos(8(x-\pi/4))[/tex]
We can see its vertical stretch by 0.35, right shift by [tex]\pi/4[/tex]horizontal stretch by 1/8
Period of cos(x) is of [tex]2\pi[/tex] length. But 1.8 stretching makes its period shrink to [tex]2\pi/8 = \pi/4[/tex]
Thus, the transformations that are needed to change the parent cosine function to y = 0.35×cos(8(x-π/4)) are:
- vertical stretch of 0.35
- horizontal compression to period of [tex]\pi/4[/tex] (which means period of cosine is shrunk to [tex]\pi/4[/tex] which originally was [tex]2\pi[/tex] )
- phase shift of [tex]\pi/4[/tex] to right
Learn more about transformation of functions here:
https://brainly.com/question/17006186
Answer: vertical compression of 0.35, horizontal compression to a period of StartFraction pi Over 4 EndFraction, phase shift of StartFraction pi Over 4 EndFraction units to the right
Step-by-step explanation:
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.