Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The length of the arc which subtends a [tex]\pi/3[/tex] radians angle on a circle with 6 ft radius is given by: Option C: 6.3 feet approximately.
How to find the relation between angle subtended by the arc, the radius and the arc length?
[tex]2\pi^c = 360^\circ = \text{Full circumference}[/tex]
The superscript 'c' shows angle measured is in radians.
If radius of the circle is of r units, then:
[tex]1^c \: \rm covers \: \dfrac{circumference}{2\pi} = \dfrac{2\pi r}{2\pi} = r\\\\or\\\\\theta^c \: covers \:\:\: r \times \theta \: \rm \text{units of arc}[/tex]
For this case, we have:
- Radius of the circle = r = 6 ft
- Angle subtended by the considered arc of the circle on its center = [tex]\theta^c = \dfrac{\pi}{3}^c[/tex]
Thus, if we take:
Length of the arc = L feet, then:
[tex]L =r \times \theta = 6 \times \dfrac{\pi}{3} = 2\pi \: \rm ft \approx 6.28 \approx 6.3 \: ft[/tex]
Thus, the length of the arc which subtends a [tex]\pi/3[/tex] radians angle on a circle with 6 ft radius is given by: Option C: 6.3 feet approximately.
Learn more about arc length here:
https://brainly.com/question/12058177
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.