Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The polynomial-like expression is satisfied by the real value x = 1.
How to determine the real solution of a polynomial-like expression
In this question we must apply the concepts of logarithms and algebra properties to solve the entire expression. Initially, we expand the right part of the expression:
[tex](2^{x}-4)^{3}+(4^{x}-2)^{3} = (4^{x}+2^{x}-6)^{3}[/tex]
[tex](2^{x}-4)^{3} + (4^{x}-2)^{3} = [(2^{x}-4)+(4^{x}-2)]^{3}[/tex]
[tex](2^{x}-4)^{3}+(4^{x}-2)^{3} = (2^{x}-4)^{3}+3\cdot (2^{x}-4)^{2}\cdot (4^{x}-2)+3\cdot (2^{x}-4)\cdot (4^{x}-2)^{2}+(4^{x}-2)^{3}[/tex]
[tex]3\cdot (2^{x}-4)^{2}\cdot (4^{x}-2)+3\cdot (2^{x}-4)\cdot (4^{x}-2)^{2} = 0[/tex]
[tex]2^{x}-4 + 4^{x}-2 = 0[/tex]
[tex]2^{x}\cdot 2^{x} + 2^{x}-6 = 0[/tex]
[tex]u^{2}+u - 6 = 0[/tex]
[tex](u+3)\cdot (u-2) = 0[/tex]
Hence, the roots of the pseudopolynomial are [tex]u_{1} = -3[/tex] and [tex]u_{2} = 2[/tex]. Only the second one have a real value of x. Hence, we have the following solution:
[tex]2^{x} = 2[/tex]
[tex]x\cdot \log 2 = \log 2[/tex]
[tex]x = 1[/tex]
The polynomial-like expression is satisfied by the real value x = 1. [tex]\blacksquare[/tex]
To learn more on logarithms, we kindly invite to check this verified question: https://brainly.com/question/24211708
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.