Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The average rates of change of a function f(x) and g(x) are their slopes
The average rate of change of the function f(x) is always less than the average rate of change of the function g(x)
How to determine the average rate of change?
The average rate of change of a function f(x) over the interval [a,b] is calculated as:
[tex]m = \frac{f(b) - f(a)}{b - a}[/tex]
The average rates of change of the functions over the intervals are:
A. 0 ≤ x ≤ 3
[tex]m_1 = \frac{f(3) - f(0)}{3 - 0} = \frac{5 * 3 - 5 *0}{3 - 0} = 5[/tex] ---- f(x)
[tex]m_2 = \frac{g(3) - g(0)}{3 - 0} = \frac{25 * 3 - 25 *0}{3 - 0} = 25[/tex] --- g(x)
B. 0 ≤ x ≤ 2
[tex]m_1 = \frac{f(2) - f(0)}{2 - 0} = \frac{5 * 2 - 5 *0}{2 - 0} = 5[/tex] ---- f(x)
[tex]m_2 = \frac{g(2) - g(0)}{2 - 0} = \frac{25 * 2 - 25 *0}{2 - 0} = 25[/tex] --- g(x)
C. 3 ≤ x ≤ 6
[tex]m_1 = \frac{f(6) - f(3)}{6 - 3} = \frac{5 * 6 - 5 *3}{6 - 3} = 5[/tex] ---- f(x)
[tex]m_2 = \frac{g(6) - g(3)}{6 - 3} = \frac{25 * 6 - 25 *3}{6 - 3} = 25[/tex] --- g(x)
D. 1 ≤ x ≤ 2
[tex]m_1 = \frac{f(2) - f(1)}{2 - 1} = \frac{5 * 2 - 5 *1}{2 - 1} = 5[/tex] ---- f(x)
[tex]m_2 = \frac{g(2) - g(1)}{2 - 1} = \frac{25 * 2 - 25 *1}{2 - 1} = 25[/tex] --- g(x)
From the above computation, we can see that:
The average rate of change of the function f(x) = 5x is always less than the average rate of change of the function g(x) = 25x
Read more about average rates of change at:
https://brainly.com/question/8728504
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.