Answered

Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

solve the question in the picture​

Solve The Question In The Picture class=

Sagot :

Answer:

n = 7

Step-by-step explanation:

simplify the logs according to their bases

View image monoaudrey

Answer:

n = 7

Step-by-step explanation:

[tex]\sf \log_4(64)^{n+1}=log_5(625)^{n-1}[/tex]

Change 64 to an exponent with base 4 and 625 to an exponent with base 5:

[tex]\implies \sf \log_4(4^3)^{n+1}=log_5(5^4)^{n-1}[/tex]

Using exponent rule [tex](a^b)^c=a^{bc}[/tex]

[tex]\implies \sf \log_4(4)^{3(n+1)}=log_5(5)^{4(n-1)}[/tex]

Using log rule:  [tex]\log_a(b^c)=c \log_a(b)[/tex]

[tex]\implies \sf 3(n+1)\log_4(4)}=4(n-1)log_5(5)[/tex]

Using log rule: [tex]\sf \log_a(a)=1[/tex]

[tex]\implies \sf 3(n+1)=4(n-1)[/tex]

[tex]\implies \sf 3n+3=4n-4[/tex]

[tex]\implies \sf 3+4=4n-3n[/tex]

[tex]\implies \sf n=7[/tex]

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.