Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex] \sf \: Proved \: \angle \: OAD \: = \angle \: OCD[/tex]
Step-by-step explanation:
Given:
Mn is diameter of circle having centre O
and BD = OD,
To prove that:
[tex]\angle \: OAD \: = \angle \: OCD[/tex]
Solution:
Join the points O and B and draw OB,
On joining the line,
in ∆OCD and ∆OBD,
OC =OB → (Radius of same circle)
BD =CD → (from given)
OD =OD → (Common side in both the triangles)
Hence ∆OCD and ∆OBD are congruent from SSS property.
so we can say that,
[tex]\angle \: OBD \: = \angle \: OCD[/tex]
Consider above prove as statement A
Corresponding angles of congruent traingle.
in ∆ OAB,
OA = OB (radius of same circle)
hence ∆OAB is an isosceles traingle.
We know that opposite angle of isosceles traingle are always equal. hence,
[tex]\angle \: OBD \: = \angle \: OAB \\ \angle \: OAB \: = \angle \: OAD (same \: angles) \\ \angle \: OBD \: = \angle \: OAD[/tex]
Consider above prove as statement B
From Statement A & B we can say that
[tex]\angle \: OAD \: = \angle \: OCD[/tex]
Thanks for joining brainly community!
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.