Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

I
For each of the following functions find f(-x) and -f(x), then determine whether it
is even, odd or neither. Justify your answer.
f(x)=x^3-7/x
f(x)=|-x|
f(x)=25-x^3
f(x)=72-x^4

Sagot :

By using the definition of even and odd functions, we will see that:

  • a) odd
  • b) even.
  • c) neither
  • d) even.

What is an odd and an even function?

A function f(x) is even if:

f(x) = f(-x)

And the function is odd if:

f(-x) = -f(x).

Now let's check it for all the given functions.

a) f(x) = x^3 - 7/x

  • -f(x) = -x^3 + 7/x
  • f(-x) = (-x)^3 - 7/(-x) = -x^3 + 7/x

So this function is odd.

b)  f(x) = |-x|

  • -f(x) = -|-x|
  • f(-x) = |-(-x)| = |x| = |-x|

This function is even.

c) f(x)=25-x^3

  • -f(x) = -25 + x^3
  • f(-x) = 25 - (-x)^3 = 25 + x^3

This function is neither odd nor even.

d) f(x) = 72-x^4

  • -f(x) = -72 + x^4
  • f(-x) = 72 - (-x)^4 = 72 - x^4 = f(x)

This function is even.

If you want to learn more about odd and even functions, you can read:

https://brainly.com/question/2284364