At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Step-by-step walkthrough:
a.
Well a standard half-life equation looks like this.
[tex]N = N_0 * (\frac{1}{2})^{t/p[/tex]
[tex]N_0[/tex] is the starting amount of parent element.
[tex]N[/tex] is the end amount of parent element
[tex]t[/tex] is the time elapsed
[tex]p[/tex] is a half-life decay period
We know that the starting amount is 74g, and the period for a half-life is 2.8 days.
Therefore you can create a function based off of the original equation, just sub in the values you already know.
[tex]N(t) = 74g * (\frac{1}{2})^{t/2.8days[/tex]
b.
This is easy now that we have already made the function. Here we just reuse it, but plug in 2.8 days.
[tex]N(t) = 74g * (\frac{1}{2})^{t/2.8days} = N(2.8days) = 74g * (\frac{1}{2})^{2.8days/2.8days}\\= 74g * \frac{1}{2} = 37g[/tex]
c.
Now we just gotta do some algebra. Use the original function but this time, replace [tex]N(t)[/tex] with 10g and solve algebraically.
[tex]10g = 74g * (\frac{1}{2})^{t/2.8days}\\\\\frac{10g}{74g} = (\frac{1}{2})^{t/2.8days}[/tex]
Take the log of both sides.
[tex]log(\frac{5}{37}) = log((\frac{1}{2})^{t/2.8days})[/tex]
Use the exponent rule for log laws that, [tex]log(b^x) = x*log(b)[/tex]
[tex]log(\frac{5}{37}) = \frac{t}{2.8days} * log(\frac{1}{2})[/tex]
[tex]\frac{log(\frac{5}{37})}{log(\frac{1}{2})} = \frac{t}{2.8days}[/tex]
[tex]2.8 * \frac{log(\frac{5}{37})}{log(\frac{1}{2})} = t[/tex]
slap that in your calculator and you get
[tex]t = 8.1 days[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.