Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The minimum number of grams of I that must be present is ; 0.01836 * 10⁻³ mol
Given data :
Volume of solution to be tested for I-ion = 10 mL
Volume of Pb(NO₃)₂ = 0.2 mL
molarity of Pb(NO₃)₂ = 0.13 M
Determine the number of I that must be present
First step : calculate conc of PB²⁺ ions in the solution
conc of PB²⁺ ions = ( molarity of Pb(NO₃)₂ * volume of Pb(NO₃)₂ ) / ( total volume )
= ( 0.13 * 0.2 ) / ( 10 + 0.2 )
= ( 0.026 ) / ( 10.2 ) = 0.002549 M
Next step : determine the molarity of I
using the dissociation reaction of PbI₂
PbI₂(s) ---> Pb²⁺ (aq) + 2I (aq)
also; Ksp = [ Pb²⁺ ] [ I ]² ---- ( 1 )
From the question the given value of Ksp = 8.49 * 10⁻⁹
Therefore equation ( 1 ) becomes
8.49 * 10⁻⁹ = ( 0.002549 ) * [ I ]²
[ I ] = √ ( 8.49 * 10⁻⁹ ) / ( 0.002549 )
= 0.0018 M
Final step : Determine the minimum number of grams of I
moles of I = molarity of I * total volume
= 0.0018 M * 10.2 mL
= 0.01836 * 10⁻³ mol
Hence we can conclude that The minimum number of grams of I that must be present is ; 0.01836 * 10⁻³ mol
Learn more about Pb(NO₃)₂ : https://brainly.com/question/25071409
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.